Part Number Hot Search : 
20N03L ITS612N1 ON0938 2SC0829 C3216 F12N50F 1NHFT AL5DA002
Product Description
Full Text Search
 

To Download MPX53D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
Order this document by MPX53/D
50 kPa Uncompensated Silicon Pressure Sensors
The MPX53/MPXV53GC series silicon piezoresistive pressure sensors provide a very accurate and linear voltage output -- directly proportional to the applied pressure. These standard, low cost, uncompensated sensors permit manufacturers to design and add their own external temperature compensating and signal conditioning networks. Compensation techniques are simplified because of the predictability of Motorola's single element strain gauge design. Features * Low Cost * Patented Silicon Shear Stress Strain Gauge Design * Ratiometric to Supply Voltage * Easy to Use Chip Carrier Package Options * 60 mV Span (Typ) * Differential and Gauge Options Application Examples * Air Movement Control * Environmental Control Systems * Level Indicators * Leak Detection * Medical Instrumentation * Industrial Controls * Pneumatic Control Systems * Robotics Figure 1 shows a schematic of the internal circuitry on the stand-alone pressure sensor chip.
+ VS + Vout 1 - Vout GND 2 3 4 MPXV53GC7U CASE 482C NOTE: Pin 1 is the notched pin. Sensor MPXV53GC6U CASE 482A SMALL OUTLINE PACKAGE
MPX53 MPXV53GC SERIES
0 to 50 kPa (0-7.25 psi) 60 mV FULL SCALE SPAN (TYPICAL)
UNIBODY PACKAGE
MPX53D CASE 344
MPX53GP CASE 344B
PIN NUMBER
Gnd +Vout VS -Vout 5 6 7 8 N/C N/C N/C N/C
Figure 1. Uncompensated Pressure Sensor Schematic VOLTAGE OUTPUT versus APPLIED DIFFERENTIAL PRESSURE The differential voltage output of the sensor is directly proportional to the differential pressure applied. The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly, output voltage increases as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1).
Replaces MPX50/D MPX53DP CASE 344C NOTE: Pin 1 is the notched pin.
PIN NUMBER
1 2 Gnd +Vout 3 4 VS -Vout
REV 2
Motorola Sensor Device Data (c) Motorola, Inc. 2002
1
MPX53 MPXV53GC SERIES
MAXIMUM RATINGS(NOTE)
Rating Maximum Pressure (P1 > P2) Storage Temperature Operating Temperature Symbol Pmax Tstg TA Value 200 -40 to +125 -40 to +125 Unit kPa C C
NOTE: Exposure beyond the specified limits may cause permanent damage or degradation to the device.
OPERATING CHARACTERISTICS (VS = 3.0 Vdc, TA = 25C unless otherwise noted, P1 > P2)
Characteristic Pressure Range(1) Supply Voltage(2) Symbol POP VS Io VFSS Voff V/P -- (0 to 50 kPa) -- -- TCVFSS TCVoff TCR Zin Zout tR -- -- Min 0 -- -- 45 0 -- -0.6 -- -- -0.22 -- 0.31 355 750 -- -- -- Typ -- 3.0 6.0 60 20 1.2 -- 0.1 0.5 -- 15 -- -- -- 1.0 20 0.5 Max 50 6.0 -- 90 35 -- 0.4 -- -- -0.16 -- 0.37 505 1875 -- -- -- Unit kPa Vdc mAdc mV mV mV/kPa %VFSS %VFSS %VFSS %VFSS/C V/C %Zin/C ms ms %VFSS
Supply Current Full Scale Span(3) Offset(4) Sensitivity Linearity(5) Pressure Hysteresis(5)
Temperature Hysteresis(5) (- 40C to +125C) Temperature Coefficient of Full Scale Temperature Coefficient of Offset(5) Span(5)
Temperature Coefficient of Resistance(5) Input Impedance Output Impedance Response Time(6) (10% to 90%) Warm-Up Offset Stability(7)
NOTES: 1. 1.0 kPa (kiloPascal) equals 0.145 psi. 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating. 3. Full Scale Span (VFSS) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure. 4. Offset (Voff) is defined as the output voltage at the minimum rated pressure. 5. Accuracy (error budget) consists of the following: * Linearity: Output deviation from a straight line relationship with pressure, using end point method, over the specified pressure range. * Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied. * Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25C. * TcSpan: Output deviation at full rated pressure over the temperature range of 0 to 85C, relative to 25C. * TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85C, relative to 25C. * TCR: Zin deviation with minimum rated pressure applied, over the temperature range of -40C to +125C, relative to 25C. 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure. 7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.
2
Motorola Sensor Device Data
MPX53 MPXV53GC SERIES
TEMPERATURE COMPENSATION Figure 2 shows the typical output characteristics of the MPX53/MPXV53GC series over temperature. The piezoresistive pressure sensor element is a semiconductor device which gives an electrical output signal proportional to the pressure applied to the device. This device uses a unique transverse voltage diffused semiconductor strain gauge which is sensitive to stresses produced in a thin silicon diaphragm by the applied pressure. Because this strain gauge is an integral part of the silicon diaphragm, there are no temperature effects due to differences in the thermal expansion of the strain gauge and the diaphragm, as are often encountered in bonded strain gauge pressure sensors. However, the properties of the strain gauge itself are temperature dependent, requiring that the device be temperature compensated if it is to be used over an extensive temperature range. Temperature compensation and offset calibration can be achieved rather simply with additional resistive components, or by designing your system using the MPX2053 series sensors. Several approaches to external temperature compensation over both -40 to +125C and 0 to +80C ranges are presented in Motorola Applications Note AN840. LINEARITY Linearity refers to how well a transducer's output follows the equation: Vout = Voff + sensitivity x P over the operating pressure range (see Figure 3). There are two basic methods for calculating nonlinearity: (1) end point straight line fit or (2) a least squares best line fit. While a least squares fit gives the "best case" linearity error (lower numerical value), the calculations required are burdensome. Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. Motorola's specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.
70 100 90 80 70 OUTPUT (mVdc) 60 50 40 30 20 1 2 3 20 4 5 6 7 OFFSET (TYP) 10 30 40 50 8 MPX53 VS = 3 Vdc P1 > P2 +25C -40C OUTPUT (mVdc) 60 50 40 30 20 10 0 0 PRESSURE (kPA) THEORETICAL OFFSET (VOFF) MAX POP ACTUAL SPAN (VFSS) LINEARITY
+125C
SPAN RANGE (TYP)
10 0 PSI 0 kPa 0
PRESSURE DIFFERENTIAL
Figure 2. Output versus Pressure Differential
SILICONE DIE COAT WIRE BOND
Figure 3. Linearity Specification Comparison
DIE
LEAD FRAME
Figure 4. Cross-Sectional Diagram (not to scale) Figure 4 illustrates the differential or gauge configuration in the unibody chip carrier (Case 344). A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm. The MPX53/MPXV53GC series pressure sensor operating characteristics and internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application.
Motorola Sensor Device Data
EEEEEEEEEEE EEEEEEEEEEE EEEEEEEEEEE EEEEEEEEEEE EEEEEEEEEEE
P2
P1
STAINLESS STEEL METAL COVER EPOXY CASE
RTV DIE BOND
3
MPX53 MPXV53GC SERIES PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE
Motorola designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel which isolates the die from the environment. The Motorola presPart Number MPX53D MPX53DP MPX53GP MPXV53GC series Case Type 344 344C 344B 482A, 482C
sure sensor is designed to operate with positive differential pressure applied, P1 > P2. The Pressure (P1) side may be identified by using the table below:
Pressure (P1) Side Identifier Stainless Steel Cap Side with Port Marking Side with Port Attached Sides with Port Attached
ORDERING INFORMATION - UNIBODY PACKAGE MPX53 series pressure sensors are available in differential and gauge configurations. Devices are available with basic element package or with pressure port fittings which provide printed circuit board mounting ease and barbed hose pressure connections.
MPX Series Device Type Basic Element Ported Elements Options Differential Differential Gauge Case Type Case 344 Case 344C Case 344B Order Number MPX53D MPX53DP MPX53GP Device Marking MPX53D MPX53DP MPX53GP
ORDERING INFORMATION -- SMALL OUTLINE PACKAGE The MPXV53GC series pressure sensors are available with a pressure port, surface mount or DIP leadforms, and two packing options.
Device Order No. MPXV53GC6T1 MPXV53GC6U MPXV53GC7U Case No. 482A 482A 482C Packing Options Tape & Rail Rails Rails Marking MPXV53G MPXV53G MPXV53G
4
Motorola Sensor Device Data
MPX53 MPXV53GC SERIES PACKAGE DIMENSIONS
C R M
1
B
-A- N
PIN 1
1 2 3 4
2
3
4
Z
NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION -A- IS INCLUSIVE OF THE MOLD STOP RING. MOLD STOP RING NOT TO EXCEED 16.00 (0.630). INCHES MIN MAX 0.595 0.630 0.514 0.534 0.200 0.220 0.016 0.020 0.048 0.064 0.100 BSC 0.014 0.016 0.695 0.725 30 _ NOM 0.475 0.495 0.430 0.450 0.048 0.052 0.106 0.118 MILLIMETERS MIN MAX 15.11 16.00 13.06 13.56 5.08 5.59 0.41 0.51 1.22 1.63 2.54 BSC 0.36 0.40 17.65 18.42 30 _ NOM 12.07 12.57 10.92 11.43 1.22 1.32 2.68 3.00
L
-T- J
SEATING PLANE
G F
4 PL
F Y
D
0.136 (0.005)
M
TA
M
DAMBAR TRIM ZONE: THIS IS INCLUDED WITHIN DIM. "F" 8 PL
DIM A B C D F G J L M N R Y Z
STYLE 1: PIN 1. 2. 3. 4.
GROUND + OUTPUT + SUPPLY - OUTPUT
STYLE 2: PIN 1. 2. 3. 4.
VCC - SUPPLY + SUPPLY GROUND
STYLE 3: PIN 1. 2. 3. 4.
GND -VOUT VS +VOUT
CASE 344-15 ISSUE Z
SEATING PLANE
-T- R H N
PORT #1 POSITIVE PRESSURE (P1)
-A- U L
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1982. 2. CONTROLLING DIMENSION: INCH. DIM A B C D F G H J K L N P Q R S U INCHES MIN MAX 1.145 1.175 0.685 0.715 0.305 0.325 0.016 0.020 0.048 0.064 0.100 BSC 0.182 0.194 0.014 0.016 0.695 0.725 0.290 0.300 0.420 0.440 0.153 0.159 0.153 0.159 0.230 0.250 0.220 0.240 0.910 BSC MILLIMETERS MIN MAX 29.08 29.85 17.40 18.16 7.75 8.26 0.41 0.51 1.22 1.63 2.54 BSC 4.62 4.93 0.36 0.41 17.65 18.42 7.37 7.62 10.67 11.18 3.89 4.04 3.89 4.04 5.84 6.35 5.59 6.10 23.11 BSC
-Q-
B
PIN 1
12 34
K S F G D 4 PL 0.13 (0.005)
-P- 0.25 (0.010) J C
M
TQ
S
M
TS
S
Q
S
STYLE 1: PIN 1. 2. 3. 4.
GROUND + OUTPUT + SUPPLY - OUTPUT
CASE 344B-01 ISSUE B
Motorola Sensor Device Data
5
MPX53 MPXV53GC SERIES PACKAGE DIMENSIONS -- CONTINUED
V R
PORT #2 PORT #1
-A- U W H
PORT #2 VACUUM (P2)
L
PORT #1 POSITIVE PRESSURE (P1)
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. DIM A B C D F G H J K L N P Q R S U V W INCHES MIN MAX 1.145 1.175 0.685 0.715 0.405 0.435 0.016 0.020 0.048 0.064 0.100 BSC 0.182 0.194 0.014 0.016 0.695 0.725 0.290 0.300 0.420 0.440 0.153 0.159 0.153 0.159 0.063 0.083 0.220 0.240 0.910 BSC 0.248 0.278 0.310 0.330 MILLIMETERS MIN MAX 29.08 29.85 17.40 18.16 10.29 11.05 0.41 0.51 1.22 1.63 2.54 BSC 4.62 4.93 0.36 0.41 17.65 18.42 7.37 7.62 10.67 11.18 3.89 4.04 3.89 4.04 1.60 2.11 5.59 6.10 23.11 BSC 6.30 7.06 7.87 8.38
N
-Q-
SEATING PLANE
B
SEATING PLANE PIN 1
1234
-P- -T- J C 0.13 (0.005)
M
K
S
-T-
0.25 (0.010)
M
TQ
S G D 4 PL
F
TS
S
Q
S
STYLE 1: PIN 1. 2. 3. 4.
GROUND + OUTPUT + SUPPLY - OUTPUT
CASE 344C-01 ISSUE B
6
Motorola Sensor Device Data
MPX53 MPXV53GC SERIES SMALL OUTLINE PACKAGE DIMENSIONS
-A-
5 4
D 8 PL 0.25 (0.010)
M
TB
S
A
S
N -B-
8
G
1
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006). 5. ALL VERTICAL SURFACES 5_ TYPICAL DRAFT. DIM A B C D G H J K M N S V W INCHES MIN MAX 0.415 0.425 0.415 0.425 0.500 0.520 0.038 0.042 0.100 BSC 0.002 0.010 0.009 0.011 0.061 0.071 0_ 7_ 0.444 0.448 0.709 0.725 0.245 0.255 0.115 0.125 MILLIMETERS MIN MAX 10.54 10.79 10.54 10.79 12.70 13.21 0.96 1.07 2.54 BSC 0.05 0.25 0.23 0.28 1.55 1.80 0_ 7_ 11.28 11.38 18.01 18.41 6.22 6.48 2.92 3.17
S
W
V C H J K M
PIN 1 IDENTIFIER
-T-
SEATING PLANE
CASE 482A-01 ISSUE A
-A-
5 4
N -B-
8
G
1
0.25 (0.010)
M
TB
D 8 PL SA
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006). 5. ALL VERTICAL SURFACES 5_ TYPICAL DRAFT. 6. DIMENSION S TO CENTER OF LEAD WHEN FORMED PARALLEL. S DIM A B C D G J K M N S V W SEATING PLANE INCHES MIN MAX 0.415 0.425 0.415 0.425 0.500 0.520 0.026 0.034 0.100 BSC 0.009 0.011 0.100 0.120 0_ 15 _ 0.444 0.448 0.540 0.560 0.245 0.255 0.115 0.125 MILLIMETERS MIN MAX 10.54 10.79 10.54 10.79 12.70 13.21 0.66 0.864 2.54 BSC 0.23 0.28 2.54 3.05 0_ 15 _ 11.28 11.38 13.72 14.22 6.22 6.48 2.92 3.17
DETAIL X S W
V C
PIN 1 IDENTIFIER
-T- K M J DETAIL X
CASE 482C-03 ISSUE B
Motorola Sensor Device Data
7
MPX53 MPXV53GC SERIES
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. MOTOROLA and the logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. E Motorola, Inc. 2001. How to reach us: USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334 Technical Information Center: 1-800-521-6274 HOME PAGE: http://www.motorola.com/semiconductors/
8
Motorola Sensor Device Data
MPX53/D


▲Up To Search▲   

 
Price & Availability of MPX53D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X